Skip to content

数学表記

最終更新日時: 2025年08月25日 12:57

  • nothing

xyz \([^[:space:]]+\) \([^[:space:]]+\) \(.*)

\1
記号入力記号入力記号入力
α\alpha \alpha A\Alpha \Alpha
β\beta \beta B\Beta \Beta
γ\gamma \gamma Γ\Gamma \Gamma
δ\delta \delta Δ\Delta \Delta
ϵ\epsilon \epsilon E\Epsilon \Epsilon
ε\varepsilon \varepsilon
ζ\zeta \zeta Z\Zeta \Xeta
η\eta \eta H\Eta \Eta
θ\theta \theta Θ\Theta \Theta
ϑ\vartheta \vartheta
ι\iota \iota I\Iota \Iota
κ\kappa \kappa K\Kappa \Kappa
λ\lambda \lambda Λ\Lambda \Lambda
ν\nu \nu N\Nu \Nu
μ\mu \mu M\Mu \Mu
ξ\xi \xi Ξ\Xi \Xi
ο\omicron \omicron O\Omicron \Omicron
π\pi \pi Π\Pi \Pi
ϖ\varpi \varpi
ρ\rho \rho P\Rho \Rho
ϱ\varrho \varrho
σ\sigma \sigma Σ\Sigma \Sigma
ς\varsigma \varsigma
τ\tau \tau T\Tau \Tau
υ\upsilon \upsilon Υ\Upsilon \Upsilon
ϕ\phi \phi Φ\Phi \Phi
φ\varphi \varphi
χ\chi \chi X\Chi \Chi
ψ\psi \psi Ψ\Psi \Psi
ω\omega \omega Ω\Omega \Omega
\mho \mho
\prod \prod Σ\Sigma \Sigma
\nabla \nabla
\partial \partial
\Re \Re \Im \Im
\langle \langle \rangle \rangle
\forall \forall \exists \exists
\aleph \aleph
\beth \beth
\daleth \daleth
\gimel \gimel
\complement \complement
\ell \ell
ð\eth \eth
\hbar \hbar \hslash \hslash
\wp \wp
\vee \vee
\in \in
\supset \supset
\cup \cup
\emptyset \emptyset \infty \infty
ı\imath \imath ȷ\jmath \jmath
̸\not \not \setminus \setminus$
×\times \times \cdot \cdot
¬\neg \neg
\prime \prime
min\min \min max\max \max
sin\sin \sin cos\cos \cos tan\tan \tan
arcsin\arcsin \arcsin arccos\arccos \arccos arctan\arctan \arctan
exp\exp \exp log\log \log ln\ln \ln
\equiv \equiv \fallingdotseq \fallingdotseq \neq \neq
\sim \sim \simeq \simeq \approx \approx
記号入力記号入力記号入力
\rightarrow \rightarrow \leftarrow \leftarrow \leftrightarrow \leftrightarrow
\Rightarrow \Rightarrow \Leftarrow \Leftarrow \Leftrightarrow \Leftrightarrow
\uparrow \uparrow \downarrow \downarrow
\mapsto \mapsto
記号入力
\longrightarrow \longrightarrow
\longleftarrow \longleftarrow
\longleftrightarrow \longleftrightarrow
\Longleftarrow \Longleftarrow
\Longrightarrow \Longrightarrow
\Longleftrightarrow \Longleftrightarrow
\longmapsto \longmapsto

\vec{a}はベクトルにならない。普通にただの矢印なしアルファベットになる(a\vec{a})

a\mathbf{a}
$$
\mathbf{a}
$$
a\bm{a}
$$
\bm{a}
$$
a\overrightharpoon{a}
$$
\overrightharpoon{a}
$$
a\overrightarrow{a}
$$
\overrightarrow{a}
$$

\left \rightで囲むと縦方向にいっぱいになる

x|x|
$$
|x|
$$
x\lvert x \rvert
$$
\lvert x \rvert
$$
x\mid x \mid
$$
\mid x \mid
$$
x\|x\|
$$
\|x\|
$$
ab|\frac{a}{b}|
$$
|\frac{a}{b}|
$$
ab\left|\frac{a}{b}\right|
$$
\left|\frac{a}{b}\right|
$$

\left \rightで囲むと縦方向にいっぱいになる

(ab)(\frac{a}{b})
$$
(\frac{a}{b})
$$
(ab)\left(\frac{a}{b}\right)
$$
\left(\frac{a}{b}\right)
$$
[ab]\left[\frac{a}{b}\right]
$$
\left[\frac{a}{b}\right]
$$
<ab>\left<\frac{a}{b}\right>
$$
\left<\frac{a}{b}\right>
$$
{ab}\left\{\frac{a}{b}\right\}
$$
\left\{\frac{a}{b}\right\}
$$

中カッコだけはmathの文法の囲い記号と分けるためにエスケープする

f(x)dx\int f(x) dx
$$
\int f(x) dx
$$
f(x)dx\int f(x) \, dx
$$
\int f(x) \, dx
$$

ちょっとだけ間が空く

+f(x)dx\int_{- \infty}^{+ \infty} f(x) dx
$$
\int_{- \infty}^{+ \infty} f(x) dx
$$
+f(x)dxdy\iint_{- \infty}^{+ \infty} f(x) dx dy
$$
\iint_{- \infty}^{+ \infty} f(x) dx dy
$$
Cf(z)dz\oint_{C} f(z) dz
$$
\oint_{C} f(z) dz
$$
fx\frac{\partial f}{\partial x}
$$
\frac{\partial f}{\partial x}
$$
(1)×(1)先に計算+1÷2先に計算5=72 \overbrace{(-1)\times(-1)}^{\text{先に計算}}+ \overbrace{1\div2}^{\text{先に計算}}-5= -\frac{7}{2}
$$
\overbrace{(-1)\times(-1)}^{\text{先に計算}}+
\overbrace{1\div2}^{\text{先に計算}}-5=
-\frac{7}{2}
$$

本来は場合分けの記述に使う

{x+y=13x+2y=0 \begin{cases} x+y &= 1 \\ 3x+2y & = 0\\ \end{cases}
$$
\begin{cases}
x+y &= 1 \\
3x+2y & = 0\\
\end{cases}
$$
v= (vxvyvz)\overrightarrow{v}= \ \begin{pmatrix} v_{x}\\ v_{y}\\ v_{z} \end{pmatrix}
$$
\overrightarrow{v}=
\
\begin{pmatrix}
v_{x}\\
v_{y}\\
v_{z}
\end{pmatrix}
$$
v= [vxvyvz]\overrightarrow{v}= \ \begin{bmatrix} v_{x}\\ v_{y}\\ v_{z} \end{bmatrix}
$$
\overrightarrow{v}=
\
\begin{bmatrix}
v_{x}\\
v_{y}\\
v_{z}
\end{bmatrix}
$$

式を列挙

{x=ayy=bzzz=c\left\{ \begin{aligned} x &= a\\ yy &= b\\ zzz &= c \end{aligned} \right.
$$
\left\{
\begin{align*}
x &= a\\
yy &= b\\
zzz &= c
\end{align*}
\right.
$$
{x=ayy=bzzz=c\left\{ \begin{aligned} & x &= a\\ & yy &= b\\ & zzz &= c \end{aligned} \right.
$$
\left\{
\begin{align*}
& x &= a\\
& yy &= b\\
& zzz &= c
\end{align*}
\right.
$$

偶数個目の&はスペースを入れることを利用

{x=ayy=bzzz=c\left\{ \begin{aligned} & x &= &&a\\ & yy &= &&b\\ & zzz &= &&c \end{aligned} \right.
$$
\left\{
\begin{align*}
& x &= &&a\\
& yy &= &&b\\
& zzz &= &&c
\end{align*}
\right.
$$

式に番号付き列挙

{x=ayy=bzzz=c\left\{ \begin{align} x &= a &\\ yy &= b &\\ zzz &= c & \end{align} \right.
$$
\left\{
\begin{align}
x &= a &\\
yy &= b &\\
zzz &= c &
\end{align}
\right.
$$

式番号を指定して列挙

{x=ay=bz=c\left\{ \begin{align} x &= a & \tag{12} \\ y &= b & \tag{23} \\ z &= c & \tag{33} \\ \end{align} \right.
$$
\left\{
\begin{align}
x &= a & \tag{12} \\
y &= b & \tag{23} \\
z &= c & \tag{33} \\
\end{align}
\right.
$$

複数の式でも、まとめて一つの式として番号付け

{x=ay=bz=c\begin{equation} \left\{ \begin{aligned} x &= a\\ y &= b\\ z &= c \end{aligned} \right. \end{equation}
$$
\begin{equation}
\left\{
\begin{aligned}
x &= a\\
y &= b\\
z &= c
\end{aligned}
\right.
\end{equation}
$$

式に番号付き列挙

{x=ay=bz=c\left\{ \begin{align} x &= a &\\ y &= b &\\ z &= c & \end{align} \right.
$$
\left\{
\begin{align}
x &= a &\\
y &= b &\\
z &= c &
\end{align}
\right.
$$

式番号を指定して列挙

{x=ay=bz=c\left\{ \begin{align} x &= a & \tag{12} \\ y &= b & \tag{23} \\ z &= c & \tag{33} \\ \end{align} \right.
$$
\left\{
\begin{align}
x &= a & \tag{12} \\
y &= b & \tag{23} \\
z &= c & \tag{33} \\
\end{align}
\right.
$$

複数の式でも、まとめて一つの式として番号付け

{x=ay=bz=c\begin{equation} \left\{ \begin{aligned} x &= a\\ y &= b\\ z &= c \end{aligned} \right. \end{equation}
$$
\begin{equation}
\left\{
\begin{aligned}
x &= a\\
y &= b\\
z &= c
\end{aligned}
\right.
\end{equation}
$$
(1x+1y)( \frac{1}{x} + \frac{1}{y} )
$$
(
\frac{1}{x} + \frac{1}{y}
t)
$$
(1x+1y)\left( \frac{1}{x} + \frac{1}{y} \right)
$$
\left(
\frac{1}{x} + \frac{1}{y}
\right)
$$

同じブロックでないと定義は使えない

dx,ddx,dfdx,dnfdxn \gdef\dd{\mathrm{d}} \gdef\d#1{\frac{\dd}{\dd #1}} \gdef\dv#1#2{\frac{\dd #2}{\dd #1}} \gdef\ndv#1#2#3{\frac{\dd^{#3} #2}{\dd #1^{#3}}} \dd x, \d{x}, \dv{x}{f}, \ndv{x}{f}{n}
$$
\gdef\dd{\mathrm{d}}
\gdef\d#1{\frac{\dd}{\dd #1}}
\gdef\dv#1#2{\frac{\dd #2}{\dd #1}}
\gdef\ndv#1#2#3{\frac{\dd^{#3} #2}{\dd #1^{#3}}}
\dd x, \d{x}, \dv{x}{f}, \ndv{x}{f}{n}
$$

/*

*/