Skip to content

∇、偏微分記号

最終更新日時: 2025年08月25日 12:57

=(x,y,z)∇ = (\frac{∂}{∂x}, \frac{∂}{∂y}, \frac{∂}{∂z}) f=(fx,fy,fz)∇f = (\frac{∂f}{∂x}, \frac{∂f}{∂y}, \frac{∂f}{∂z}) F=Fxx+Fyy+Fzz∇ \cdot \vec{F} = \frac{∂F_x}{∂x} + \frac{∂F_y}{∂y} + \frac{∂F_z}{∂z} ×F=(FzyFyz)i+(FxzFzx)j+(FyxFxy)k∇ × \vec{F} = (\frac{∂F_z}{∂y} - \frac{∂F_y}{∂z})\vec{i} + (\frac{∂F_x}{∂z} - \frac{∂F_z}{∂x})\vec{j} + (\frac{∂F_y}{∂x} - \frac{∂F_x}{∂y})\vec{k} 2=2x2+2y2+2z2∇^2 = \frac{∂^2}{∂x^2} + \frac{∂^2}{∂y^2} + \frac{∂^2}{∂z^2} =(ρ,1ρφ,z)∇ = (\frac{∂}{∂ρ}, \frac{1}{ρ}\frac{∂}{∂φ}, \frac{∂}{∂z}) f=fρeρ+1ρfφeφ+fzk∇f = \frac{∂f}{∂ρ}\vec{e_ρ} + \frac{1}{ρ}\frac{∂f}{∂φ}\vec{e_φ} + \frac{∂f}{∂z}\vec{k} F=1ρρ(ρFρ)+1ρFφφ+Fzz∇ \cdot \vec{F} = \frac{1}{ρ}\frac{∂}{∂ρ}(ρF_ρ) + \frac{1}{ρ}\frac{∂F_φ}{∂φ} + \frac{∂F_z}{∂z} ×F=(1ρFzφFφz)eρ+(FρzFzρ)eφ+1ρ((ρFφ)ρFρφ)k∇ × \vec{F} = (\frac{1}{ρ}\frac{∂F_z}{∂φ} - \frac{∂F_φ}{∂z})\vec{e_ρ} + (\frac{∂F_ρ}{∂z} - \frac{∂F_z}{∂ρ})\vec{e_φ} + \frac{1}{ρ}(\frac{∂(ρF_φ)}{∂ρ} - \frac{∂F_ρ}{∂φ})\vec{k} 2=1ρρ(ρρ)+1ρ22φ2+2z2∇^2 = \frac{1}{ρ}\frac{∂}{∂ρ}(ρ\frac{∂}{∂ρ}) + \frac{1}{ρ^2}\frac{∂^2}{∂φ^2} + \frac{∂^2}{∂z^2} =(r,1rθ,1rsinθφ)∇ = (\frac{∂}{∂r}, \frac{1}{r}\frac{∂}{∂θ}, \frac{1}{r\sin θ}\frac{∂}{∂φ}) f=frer+1rfθeθ+1rsinθfφeφ∇f = \frac{∂f}{∂r}\vec{e_r} + \frac{1}{r}\frac{∂f}{∂θ}\vec{e_θ} + \frac{1}{r\sin θ}\frac{∂f}{∂φ}\vec{e_φ} F=1r2r(r2Fr)+1rsinθθ(sinθFθ)+1rsinθFφφ∇ \cdot \vec{F} = \frac{1}{r^2}\frac{∂}{∂r}(r^2F_r) + \frac{1}{r\sin θ}\frac{∂}{∂θ}(\sin θF_θ) + \frac{1}{r\sin θ}\frac{∂F_φ}{∂φ} ×F=1rsinθ((Fφsinθ)θFθφ)er+1r(1sinθFrφ(rFφ)r)eθ+1r((rFθ)rFrθ)eφ∇ × \vec{F} = \frac{1}{r\sin θ}(\frac{∂(F_φ\sin θ)}{∂θ} - \frac{∂F_θ}{∂φ})\vec{e_r} + \frac{1}{r}(\frac{1}{\sin θ}\frac{∂F_r}{∂φ} - \frac{∂(rF_φ)}{∂r})\vec{e_θ} + \frac{1}{r}(\frac{∂(rF_θ)}{∂r} - \frac{∂F_r}{∂θ})\vec{e_φ} 2=1r2r(r2r)+1r2sinθθ(sinθθ)+1r2sin2θ2φ2∇^2 = \frac{1}{r^2}\frac{∂}{∂r}(r^2\frac{∂}{∂r}) + \frac{1}{r^2\sin θ}\frac{∂}{∂θ}(\sin θ\frac{∂}{∂θ}) + \frac{1}{r^2\sin^2 θ}\frac{∂^2}{∂φ^2} (×F)=0∇ \cdot (∇ × \vec{F}) = 0 ×(f)=0∇ × (∇f) = \vec{0} ×(×F)=(F)2F∇ × (∇ × \vec{F}) = ∇(∇ \cdot \vec{F}) - ∇^2\vec{F} ×(×F)=(F)2F∇ × (∇ × \vec{F}) = ∇(∇ \cdot \vec{F}) - ∇^2\vec{F} CFdr=S(×F)dS\oint_C \vec{F} \cdot d\vec{r} = \iint_S (∇ × \vec{F}) \cdot d\vec{S} V(F)dV=SFdS\iiint_V (∇ \cdot \vec{F})dV = \oiint_S \vec{F} \cdot d\vec{S}